MATHEMATICS

DPP No. 39

Total Marks: 25

Topics :	Application of Derivatives,	Solution of	Triangle
----------	-----------------------------	-------------	----------

Type of Questions M.M., Min. Comprehension (no negative marking) Q.1 to Q.3 (3 marks, 3 min.) 91 [9, Single choice Objective (no negative marking) Q. 4,5,6,7 (3 marks, 3 min.) [12, 12] Subjective Questions (no negative marking) Q.8 (4 marks, 5 min.) [4, 5]

COMPREHENSION (Q. NO. 1 TO 3)

Let f(x) be a function such that it is thrice differentiable in (a, b). Consider a function

 $\phi(x) = f(b) - f(x) - (b - x) f'(x) - \frac{(b - x)^2}{2} f''(x) - (b - x)^3 \lambda. \text{ and } \phi(x) \text{ follows all conditions of Rolle's theorem}$ on [a, b]

- If there exist some number $c \in (a, b)$ such that $\phi'(c) = 0$ and $f(b) = f(a) + (b a) f'(a) + \frac{(b a)^2}{2}$ 1. $f''(a) + \mu (b - a)^3 f'''(c)$, then μ is

- (A) $\frac{1}{2}$ (B) $\frac{1}{6}$ (C) $\frac{1}{8}$ (D) $-\frac{1}{2}$
- 2. Let $f(x) = x^4 - 6x^3 + 12x^2 - 8x + 3$. If Rolle's theorem is applicable to $\phi(x)$ on [2, 2 + h] and there exist $c \in (2, 2+h) \text{ such that } \phi'(c) = 0 \text{ and } \frac{f(2+h)-f(2)}{h^3} = g(c), \text{ then slope of tangent of curve } y = g(x) \text{ at } x = 5$
 - (A) 4
- (B) 5
- (C) 6
- (D) 10
- 3. Let $f(x) = e^{2x}$ and b = a + h. If there exists a real number $\theta \in (0, 1)$ such that $\phi(a + \theta h) = 0$
 - and $\frac{e^{2h}-1-2h-2h^2}{h^3}$ = Ae^{Boh}, then the value of $\frac{2B}{\Delta}$ is equal to
 - (A) 4
- (B)3
- (C)6
- (D) 8
- The curve $y = x^3 + x^2 x$ has two horizontal tangents. The distance between these two horizontal 4. lines, is
 - (A) $\frac{13}{9}$
- (B) $\frac{11}{9}$
- (C) $\frac{22}{27}$
- (D) $\frac{32}{27}$

- If a, b > 0, then minimum value of $y = \frac{b^2}{a-x} + \frac{a^2}{x}$ in (0, a) is
 - (A) $\frac{a+b}{a}$
- (B) $\frac{ab}{a+b}$ (C) $\frac{1}{a} + \frac{1}{b}$
- (D) none of these
- 6. Find maximum possible area that can be enclosed by a wire of length 20 cm by bending it in form of a circular sector.
 - (A) 10
- (B) 25
- (C) 30
- (D) 20
- 7. If the sides a, b, c of a triangle ABC are the roots of the equation $x^3 - 13x^2 + 54x - 72 = 0$, then the value of $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$ is equal to (with usual notation in $\triangle ABC$)
 - (A) $\frac{169}{144}$
- (B) $\frac{61}{72}$ (C) $\frac{61}{144}$
- (D) $\frac{169}{72}$
- If x = e^t sin t, y = e^t cos t, show that $\frac{d^2y}{dx^2} = \frac{-2(x^2 + y^2)}{(x + y)^3}$ 8.

Answers Kev

- (B) **2.** (A) **3.** (B) **4.** (D)
- **5.** (D) **6.** (B) **7.** (C)